
 1 

The many faces of missing data 
 
Tom Breur 
28 March 2023 
 
Data comes in three varieties: Good, Bad, and Ugly. I say this tongue-in-cheek, because so much 
of my time working with data and building models seems to go up in smoke. There are many 
terms in use like: “data preparation”, “data wrangling”, “data curation”, “data cleansing”, and 
others. Whether you refer to this as cleaning or preparation, somewhere along the line flaws 
will need to be addressed. From my experience, the lion’s share of those flaws have their root 
cause in shortcomings during upstream data integration. I sometimes think of this as “technical 
debt” which remains from imperfect data governance that needs to be paid off. Data 
management and data stewardship are rarely front and center on the corporate agenda. But in 
between pulling source data to work with, and tagging your dataset as “ready for analysis”, at 
some point you have to “pay the piper.” 
 
Here is an interesting paradox: the more diverse your data sources for analysis, the more likely 
that you will find interesting novel patterns that can be used for commercial gains. However, if 
data sources cannot readily be joined, it’s probably because no one has attempted to 
consolidate these data until now. Imperfect data integration efforts lead to fallout that partially 
will need to be deferred: it simply isn’t feasible or economical to attempt to fix each and every 
data quality problem for the purpose of assembling an ad hoc data set for analysis. Therefore, 
you need to accept the fact that ‘some’ of your data will be and remain missing.   
 
When I say data are “missing” in the context of this paper, it can mean several things. Missing 
can mean a value was supposed to be present, but for unknown reasons wasn’t available. 
“Missing” could also mean that a value would not be expected, because it doesn’t apply. For 
instance, when a record contains a Boolean value that indicates if a customer has a savings 
account, then for people who do not have such an account, a missing value for “Balance” is to 
be expected. Here missing indicates something like “does not apply.” It will be obvious that 
these two different scenarios, expected or unexpectedly missing data, need to be dealt with in 
completely different ways. 
 
 
An example 
Let’s look at some straightforward examples to clarify. We are joining customer transaction 
data from disparate source systems. One of the systems lists a column “Trx_date”, the other 
data source has “Transactiondate”, and they appear to refer to the same thing. The process of 
finding records across disparate systems that refer to the same entity is called “record linkage” 
or sometimes “data linkage” (an entire research field in and of its own). Prof. John Talburt 
wrote “Entity Resolution and Information Quality” in 2010, and I (still) consider that one of the 
classics in this field.  
 
 

https://en.wikipedia.org/wiki/Data_preparation
https://en.wikipedia.org/wiki/Data_wrangling
https://en.wikipedia.org/wiki/Data_curation
https://en.wikipedia.org/wiki/Data_cleansing
https://en.wikipedia.org/wiki/Technical_debt
https://en.wikipedia.org/wiki/Technical_debt
https://www.urbandictionary.com/define.php?term=pay%20the%20piper
https://en.wikipedia.org/wiki/Record_linkage
https://ualr.edu/www/john-talburt/
https://www.amazon.com/Entity-Resolution-Information-Quality-Talburt/dp/0123819725
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When we try to join data from these two source systems, it turns out that the field “Trx_date” 
has values like 06/20/18, whereas “Transactiondate” lists 20-JUN-2018 08:03 for the 
corresponding record. For this example, we’ll assume that a deterministic record match has 
been accomplished. Although phenomena like these are quite common, record linkage is 
severely encumbered when key identifiers for the same entity (like these two “Date” fields) are 
recorded differently between source data sets.  
 
There are two issues at play here: apart from the fact that “Trx_date” doesn’t list the 
millennium in which the transaction occurred (the two digit value for “millennium” is missing), 
it is also recorded at a different grain: Date versus DateTime. We’ll conveniently ignore the 
missing millennium problem, that is to say we make the simplifying assumption that the records 
all originated form the same millennium. Since the timestamp in “Trx_date” is missing and 
cannot easily be backfilled, we proceed with the data “as is”: for the sake of discussion we need 
to decide that the effort to fix this problem upstream isn’t realistic given our timeline (i.e. 
project goals). Effectively, we choose to roll up (aggregating) “Transactiondate” from DateTime 
to the Date level. Consider this an example where a value was supposed to be present, but not 
available. After all, the transaction did get recorded at a specific point in time (even if the exact 
time it occurred didn’t get logged). 
 
Our example for “Transactiondate” was a fairly simple and straightforward one. It doesn’t take 
too much imagination to extend this single field to multi-field analogies like “Name”, “Address”, 
or more elusive compound keys. Address matching is a research field in its own right with 
intricate standardization issues, and an extra layer of complexity because of different address 
formats per country. “Standardization” here sometimes also gets called “Normalization”, but 
that is a term I try to avoid because normalization means something completely different in a 
data modeling context. 
 
 
Consolidating data silos 
The previous data field matching example was caused by siloed data. Invariably, data silos exist 
for a reason. Sometimes very subtle reasons. And sometimes they are very good and legitimate 
business reasons. Obviously this doesn’t suit our data scientist very well, since he has been 
tasked to perform cross-functional analyses. One of the recurring patterns you can expect to 
run into is that the same column name will have slightly different meanings across two or more 
departments (and/or source systems). Superficially, the word “Customer” denotes the same 
entity, but the devil is in the details: Finance defines a customer differently from Marketing, 
Operations, and Fulfillment. Therefore, (some) elements from those two sets are expected to 
match, but the sets are only partially overlapping. The boundaries are not defined in the same 
way. 
 
An obvious solution to resolve this ambiguity is to add a prefix that indicates the data source: 
Finance_customer, Marketing_customer, etc. In my younger years, I held high hopes that this 
process of conforming dimensions would ultimately allow for consistent reporting across 
departments – the holy grail of a “single version of the truth” (SVOT). Since then, I have come 

https://www.kimballgroup.com/data-warehouse-business-intelligence-resources/kimball-techniques/dimensional-modeling-techniques/conformed-dimension/
https://www.forbes.com/sites/brentdykes/2018/01/10/single-version-of-truth-why-your-company-must-speak-the-same-data-language/#7e1b68631ab3
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to appreciate that although working towards data unification is noble and worthwhile, it will 
always remain a journey. My current thinking is that it’s an illusion you will or even ever can 
arrive at nirvana with consistent definitions across the enterprise. From my experience, you 
cannot hope to capture every single user perspective present (the root cause for these slight 
differences in definition), while internal and external forces continue to operate: businesses are 
constantly in flux. Nonetheless, I recommend relentlessly working towards unification, as 
governed by business goals and priorities. 
 
 
Missing at random – three variations 
In statistics, we often refer to “missing at random” (MAR), and use it as a distinct term from 
“missing completely at random” (MCAR). Those two are usually set against “not missing at 
random” (NMAR). Methods for handling missing data rest on different sets of assumptions: 
some very strong, and some less stringent. In many cases these assumptions cannot be tested 
directly in the data, and therefore it is even more important that you understand the 
requirements imposed on the data – they differ across imputation methods. Unless you are 
familiar with these assumptions, you cannot make a prudent assessment how plausible they 
are.  

The strongest assumption to make is that the data is MCAR (“missing completely at random”). 
In this case, the odds for a value Y to be “missing” is neither dependent on the value of Y itself, 
nor should “missing” be associated with any other variable in the dataset (that is: any variable 
that will be included in models). This pattern of missingness corresponds with laypeople’s 
notion of “truly” at random. One way to test for this MCAR assumption is by recoding Y into a 
Boolean with 0 for “missing” and 1 otherwise, and then regressing all variables on Y. If any of 
the coefficients are significant, then the pattern in Y is not MCAR. You cannot test if missing is 
dependent on the value of Y itself (ie “income” is missing more often for the higher values) 
because that would require knowledge of the missing data elements.  
 
MAR (“missing at random”) is a weaker assumption, in that now “missing” values in Y may be 
associated with predictors X1 through Xn, but not depend on the value of Y itself. For example: if 
you asked about “annual income”, and people with higher income are more likely not to 
answer that question. Then “missing” is correlated with the value of income. That would be a 
violation of MAR. Strictly speaking, the assumption is actually relaxed somewhat further in that 
the pattern of “missing” in Y may not depend on Y after controlling for X1 through Xn. Although 
this assumption is (much) more relaxed, unfortunately, there is no way for testing it in the data 
since that would require knowledge of the missing data points in Y.  
 
NMAR (“Not Missing At Random”) is the weakest assumption, which occurs when the 
assumptions for MAR are violated. In real-world datasets, claiming MAR is often unreasonable 
(obviously incorrect) and then standard imputation mechanisms are problematic because they 
often lead to biased and inaccurate estimates. 
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How to fix (impute) missing values 
It is often desirable to “fix” records with missing values rather than delete these data. Typically 
to preserve valuable information contained in incomplete records. Principally, this serves to 
increase statistical power to the extent possible. Another reason to pursue imputation is to 
avoid bias associated with listwise deletion when the data are not MCAR. 
 
Much work has been done in this area in the last few decades, and new methods and 
techniques are still being developed and tested. Besides the “traditional” methods, I will briefly 
describe three others:  

• Traditional imputation methods 

• Regression based imputation 

• Maximum Likelihood imputation 

• Iterative methods of imputation 
 
Traditional imputation methods 
A notable advantage of traditional methods is that it’s a quick and easy way to replace all of 
your missing values with one simple and transparent (easy to check) procedure. It’s also an 
approach that is readily available in most statistics packages. So far the good news. The bad 
news is that it is guaranteed to introduce bias in your dataset (see e.g.: “Missing Data in 
Regression Analysis” by Yoel Haitovsky, 1968). Also, because an array of constants deflates the 
observed variance for that field, as a side effect it renders all of the commonly used statistics 
(like the p-value for significance) unreliable. That is pretty bad news, especially for the unwary. 
 
Besides imputing with either the Mean, Mode or Median, in the old days “cold” or “hot” deck 
methods were used. For reference, “deck” here refers to a stack of punch cards, to give 
youngsters a sense of how old these methods are. By choosing values pseudo randomly from a 
“deck”, you avoid the problems of imputing with a constant. But nowadays these methods have 
since been replaced by more “intelligent” approaches (see next three methods: Regression, 
Maximum Likelihood, Iterative).   
 
In summary, although many things may have been (or seemed) ‘better’ in the old days, that 
certainly does not hold for missing value imputation methods. It is bad practice, and risky at 
that, because of unreliable p-values, etc. In light of this, as a general rule of thumb casewise 
deletion –although it is known to add bias when the missing data pattern is MAR or NMAR– is 
often still preferable over imputation with a constant, provided you can afford the loss in 
statistical power.  
 
Regression based imputation 
When a column has missing values, one way to impute those is by building a regression model 

using the records that are populated, and plugging in the estimated Y (Ŷ) in the rows that were 
missing. Although the problems are (much) less severe, this approach –just like imputing with a 
constant– suffers from underestimating the variance for columns with missings. The reason for 

this can be intuitively seen because the regression model has an error term, but the Ŷ that you 

https://en.wikipedia.org/wiki/Power_(statistics)
http://facweb.cs.depaul.edu/sjost/csc423/documents/missing_values.pdf
http://facweb.cs.depaul.edu/sjost/csc423/documents/missing_values.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130338/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130338/
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plug in is an “exact” estimate (has no error component). This will reduce the variance for that 
column, proportionate to the error component in the regression model.  
 
Using imputation with regression is a considerable improvement over “traditional” imputation 
(with constants), but unless you add a stochastic error term to your estimates, it still leads to 
underestimation of variance. As a side effect of underestimating the error variance are 
downward biased p-values which carries the risk of inadvertently flagging effects as significant, 
when in reality they are not (hence inflated Type I error). 
 
Maximum Likelihood (ML) imputation 
This is one of the contemporary methods for imputation that has proven to work quite well. 
Although it still rests on the MAR assumption, practical experience (e.g. “Missing Data” by Paul 
Allison, 2001) has shown it to be an excellent method under a wide variety of situations. One of 
the desirable features of this approach is that the estimates for the model parameters are 
asymptotically unbiased. What that implies is that except for variations due to small sample 
size, the model specifications (e.g. ß values in a regression model) can generally be trusted 
except for sampling error. These properties hold when the data are MCAR, MAR, and even 
NMAR provided you can specify the mechanism (“cause”) for patterns in missingness. This is a 
big advantage compared to regression approaches to missing value imputation that usually lead 
to underestimating the variance.  
 
These desirable properties for maximum likelihood imputation do not come “free”, though: the 
analyst in return must specify the joint distributions between (all) variables that have missing 
values in a parametric model. For a few decades now, the Tilburg Faculty of Social Sciences has 
been providing the LEM freeware that can be leveraged for this approach (that you can 
download here on Prof. Dr. Jeroen Vermunt’s website). Several commercial software packages 
are available too, like AMOS, EQS, M-PLUS, or MX.  
 
Iterative methods of imputation 
Maximum Likelihood imputation is a valuable improvement over regression based imputation. 
The main downside to maximum likelihood imputation is that it requires (hinges on) 
specification of the parametric joint probability model for all variables with missing values. The 
results are also somewhat sensitive to choice of said model. Besides the additional effort, 
selection of that model can be challenging. A contemporary alternative is multiple imputation 
(see e.g. Rubin, 1987) which has good statistical properties, too. One could argue almost as 
good as maximum likelihood methods. Like maximum likelihood it works when the data are 
MCAR as well as MAR, and can (mostly) be made to work for NMAR as well.  
 
There are two main advantages to using iterative methods of imputation: 

1. It can be applied to virtually any kind of data or model 
2. It can be applied without resorting to packages like LEM or commercial alternatives 

One of the main drawbacks is that it does not produce 100% consistent results. I.e. if you rerun 
analyses on the same dataset, you are bound to get ever so slightly different results. Those 
variations are the result of the random seeds that will produce comparable but not quite 

https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
https://us.sagepub.com/en-us/nam/missing-data/book9419
https://jeroenvermunt.nl/
https://www.tilburguniversity.edu/staff/j-k-vermunt
https://link.springer.com/article/10.1007/BF02924688
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identical results. Another challenge is that the method is newer, less well known, and hence 
analysts may be less familiar with it.  
 
Commonly used in the realm of Bayesian data analysis is a method called Monte Carlo Markov 
Chain (MCMC), an algorithm that –in this context– is an extension of linear regression 

imputation methods. The main difference is that rather than imputing the Ŷ, the Monte Carlo 
procedure is used to determine the empirical distribution of values which avoids the problem of 
overly optimistic (too low) variance associated with the “ordinary” regression based methods 
for imputation.  
 
Obviously this approach requires additional computations (to generate empirical distributions), 
but with much more powerful hardware, and relatively modest requirements with regards to 
the number of samples that need to be generated, this procedure is usually quite tractable. This 
approach is embedded, for instance, in SAS PROC MI, but also available in several other 
commercial products like SPSS or BayesiaLab.  
 
Needless to say, when procedures like these can be “run out of the box”, without the need to 
specify a parametric joint distribution for data columns with missing values, there is little 
objection to (more or less) “always” applying an intelligent approach to missing data 
imputation.  
 
 
Project goals: pursuing a “pragmatic” route forward 
To wrap up this topic of missing value imputation, for the purpose of “efficient” analysis, we 
almost always (more or less) ’have’ to assume the distribution pattern of missing values is 
random (MCAR or MAR). Reality is, however, that the empirical distribution of missing values as 
you find it in the data is rarely (if ever) truly 100% random. In real-world datasets, the 
distribution of missing values almost always seems to contain at least some bias.  
 
Many statistical operations that we perform on data (like regression), assume completeness. 
Therefore, when you encounter a record with missing values, you need to decide on a 
“strategy” for dealing with it. In social sciences, a procedure called “listwise deletion” 
(sometimes also called “casewise deletion”) is sometimes employed where every record with a 
(any) missing value gets dropped from analysis. In fact, this approach is so common that it’s 
(almost) always available, and often even the default method for statistical analysis tools. An 
obvious “problem” associated with listwise deletion, since we know that bias in missing data 
patterns is so prevalent, is that if you drop those records wholesale then you deliberately 
(although possibly unconsciously) introduce bias into your analytic data set.  
 
Another drawback, besides the risk of inadvertently biasing your findings, is that listwise 
deletion leaves you with a smaller data set. It seems a bit of a waste to dispose of the 
potentially valuable information that was present in the fields that were populated. Not 
everyone seems to appreciate that although we live in the era of “Big Data”, for many practical 
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challenges we often find ourselves short of data. A smaller data set implies an unequivocal loss 
in statistical power which is obviously undesirable.  
 
Whether you want to “salvage” data (avoiding listwise deletion), or whether you want to avoid 
unintended bias, in both cases you will need a mechanism for imputing a value where none was 
present (but was expected). This is a domain where recently many advances have been made, 
to some extent “owing” to the big data revolution. The simplest approach of replacing all 
missing values in a column with a constant, typically the Mean or Mode, has serious drawbacks, 
as previously mentioned. So if at all possible and feasible we want to avoid that. 
 
We don’t (realistically) assume all missing values to have the same value, so an obvious side-
effect of imputing with a constant –whichever one you choose– is that it will ‘artificially’ lower 
the variance for that field, an unfortunate artefact of that method with “risky” statistical 
consequences. When you choose this option, p-values in your models can no longer be trusted 
since the way those get calculated rests on assumptions that you are willingly and knowingly 
violating. Because of this, usually the p-values come out deceptively small, i.e. you find effects 
to be significant when a more accurate and equitable estimation method might have flagged 
the effect as non-significant. Risky business! 
 
Given project goals and schedule pressure, oftentimes you need to settle for a suboptimal 
(“pragmatic”) shortcut. Your choices will be informed by how many records are missing for a 
given column, and how many columns are missing for each record, as well as their respective 
distributions. And obviously your need for precision. Columns or rows that are predominantly 
missing, and that appear in far worse condition than the rest of your data may be less 
representative for extraneous reasons. But sometimes those sparsely populated columns are 
essential for the purpose of analysis, and you will muster herculean efforts to salvage them. The 
context for analysis will drive these considerations. “It depends”, so to speak.  
 
When you can bear the loss of statistical power, often listwise deletion is a convenient and 
straightforward option. After you list the number of missing columns for each record, 
notoriously “empty” rows are a legitimate candidate for exclusion. There could be lots of 
reasons why this pattern occurs –that you want to learn about– but eliminating these records 
form analysis may be justified as well as an efficient way to address a large part of the problem. 
Similar considerations may apply for sparsely populated columns.  
 
Although less than ideal, if the proportion of missing records is less than, say, 5% imputing with 
a constant like mean or mode might be defensible if this allows you to keep the remaining 
records. Obviously, you would prefer to opt for a more “intelligent” method like regression, 
maximum likelihood, or an iterative approach. Sadly, sometimes schedule pressure may not 
allow you that option.  
 
 
SQL “NULL” values 

https://en.wikipedia.org/wiki/Power_(statistics)
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“Missing” in databases is (usually) coded as NULL, and since source data often originate in 
databases, let’s have a look at this very special “value” – one that strictly speaking should be 
thought of as the absence of a value. For a number of “technical” reasons, database systems 
use (or rather: need) so-called NULL values. Several authors (e.g. this excellent 2016 paper by 
Kenneth Baclawski: “The Meaning of NULL in Databases and Programming Languages”) have 
written great contributions on the merits and challenges of the SQL NULL value.  
 
SQL NULL suggests explicitly there is no value known. In many real-world scenarios, however, 
there is some information known. However, the conflicting data points have not been resolved, 
yet. Some authors have suggested that the information available about why a database value is 
NULL ought to be codified. It seems crude to lump all causes for NULL into a single bucket, 
when they all get mapped onto the same value. Even Codd already gave this notion thought as 
he was quite aware of the (many) problems associated with NULL. Codd (also) considered a 
multi-valued exception class, but it seemed these solutions entered as many new problems as 
they were supposed to solve. All things considered, most professionals seem to agree that a 
“single” NULL value is the best of all evils. For the purpose of downstream analysis therefore, 
the SQL NULL almost always needs to be interpreted as either a “does not apply”, or, “value 
unknown” label. 
 
 
Summary 
Missing data come in many shapes and sizes. The good, the bad, and the ugly. Data sets with a 
problematic amount of missing data, can be curated to some extent. Depending on the 
objective of analysis, cost and gains analysis, and time pressure, you can make an evaluation 
how much effort to put into this. An informed assessment requires awareness of the 
possibilities and limitations of various methods for missing data imputation (or deletion of 
records with missing data).  
 
“Quality is Free” Phil Crosby wrote in 1980, and his words seem as true as ever. If you have a 
chance to avoid data quality problems upstream, this is nearly always your best strategy. But 
for a myriad of reasons, this isn’t always feasible. Ad hoc analysis across business silos is often a 
fruitful strategy to surface gaps in your value stream and hence an opportunity to surface value 
creating opportunities through analytics. But it isn’t until these opportunities have been 
elucidated, and importantly quantified, that you can make an informed assessment whether 
systems reengineering and probably some change management is worth your while. Therefore 
ad hoc analyses that offer you a sporting chance of highlighting these pockets of business value 
will always have their place. And in many (if not all!) of these projects your analytic dataset will 
be plagued by (at least) some missing data.  
 
In statistics, we use refer to the distinction between “missing at random” (MAR), “missing 
completely at random” (MCAR), and “not missing at random” (NMAR). I would love to have 
some MCAR data, one day, but mine never look like that. Until then I usually need to make 
assumptions that data are MAR, and hope they aren’t NMAR. That’s the twilight zone I am most 
interested in, because it’s the only consideration that is relevant to me from a practical 

https://www.khoury.northeastern.edu/people/kenneth-baclawski/
https://arxiv.org/html/1606.00740
https://en.wikipedia.org/wiki/Null_(SQL)
https://en.wikipedia.org/wiki/Edgar_F._Codd
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perspective. When you know that –due to unmeasured confounding– there is an effect on the 
variable of interest from that mechanism that caused your patterns in missingness, you need to 
resort to contemporary (and rather advanced) statistical methods to try and quantify how 
“bad” the situation might be. These methods like calculating e-values, or quantitative bias 
analysis (QBA), would merit a white paper of their own. For now, I will leave that to the 
interested reader to explore himself.  
 
Methods for handling missing data rest on different sets of assumptions: some very strong, and 
some less stringent. In many cases these assumptions cannot be tested directly in the data, and 
therefore it is even more important that you understand the requirements imposed on the data 
– they differ across imputation methods. Unless you are familiar with these assumptions, you 
cannot make a prudent assessment how plausible it is your assumptions will hold, and when 
and where they might be violated. Along with testing your assumptions, I also recommend 
some causal analysis, preferably illustrated with causal diagrams (DAG’s: directed acyclical 
graphs) to support your thinking. Robust study design helps avoid missing data, and also 
prepares imputation strategies for those likely to be encountered.  
 
At the end of the day, missing data can rarely if ever be avoided altogether. For projects where 
the amount of missing data and their non-randomness becomes a serious threat to validity, it’s 
on the analyst or data scientist to make an informed data assay: can these data be salvaged? 
Are they fit for purpose, provided the efforts to impute worth your while? The onus is on you to 
make an informed decision about which data to discard, and which data you will repair. Your 
knowledge of imputation methods will also drive responsible data governance to properly 
inform all downstream information consumers of limitations and caveats. The efforts to impute 
can be onerous, but often worth your while, provided you go about it in the right way. As 
Charles Babbage was quoted saying: “Errors using inadequate data are much less than using no 
data at all.” 
 
 
 
 
 
 
 
 

https://en.wikipedia.org/wiki/Charles_Babbage
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